

Great Lake Symposium on Smart Grid and the New Energy Economy Microgrid as a Platform: A Holistic Approach to Campus Energy Solution Design

> Stephen F. Schneider, PE Vice President & Chief Solutions Architect

September 24, 2013

All rights reserved.

NATIONAL SECURITY • ENERGY & ENVIRONMENT • HEALTH • CYBERSECURITY

A Quick Word on SAIC

Fortune 240

National Rankings 2013 Engineering News-Record

#23	Top 25 in Power
#6	Top 15 in Transmission & Distributior (T&D)
#8	Top 50 in Program Management
#46	Top 100 in Design Build
#34	Top 500 in Design
#8	Top 200 Environmental Firms

DesignBuild[™] project delivery

Commissioning and start-up Construction Pre-construction

Energy management

Efficiency and conservation Energy-saving performance contracts Energy systems and dashboards Procurement Program management

Renewable and clean energy

Combined heat and power and biomass Energy storage Geothermal Renewable/alternative fuels and chemicals Waste-to-energy

Microgrids

Combined heat and power Energy management Energy-saving performance contracts Energy security Energy storage Smart grid as a service

Systems integration and controls

Assembly management system Energy systems and dashboards Systems engineering

Transmission and distribution

Distribution automation Power line design and engineering Power system protection Substation design and engineering System planning and analyses

Starting Thought......

"Technology without Finance is just a Science Project. You <u>must</u> be able to talk to both the Chief Technology Officer and the Chief Financial Officer at the same time."

High Level Microgrid Architecture Base Load Focused

- Works both \checkmark supply and demand
- Ability to tune \checkmark your campus
 - **Economics**
 - Sustainability •
 - Resiliency •
 - Critical Loads ٠
 - Efficiency
- **Resiliency via** \checkmark independent energy sources
- Electrical and \checkmark thermal integration

Supply Approach – Base-load Generation

A comprehensive "8760" & Systemic Integrative Analysis is Vital

- Base-load generation and cooling
 - 6 MVA on-site generation: 3 x 2MVA reciprocating engine Combined Heat and Power (CHP) units
 - 1 x 1,000 ton absorption chiller
- System Operations
 - Normally parallel with utility system
 - Peaking energy supplied by utility
 - Solution provides "N+1" generation

Power & Energy Society*

Supply Approach: Typical Existing Energy Feed

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Existing Condition:

- No potential for energy savings
- Energy is totally contingent upon utility electrical supply. Constrained energy assurity and resilience

Supply Approach: Normal System Operations

Paralleled with the Utility

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Supply Approach: Contingency System Operations

Loss of Single CHP: Maintenance – Utility Supply Compensation Until Campus Generation Reintegration

at ILLINOIS INSTITUTE OF TECHNOLOGY

Power & Energy Society*

Supply Approach: Contingency System Operations

Total Loss of Utility Supply – Emergency Diesel Generation Compensation Until Utility Restoration

Power & Energy Society*

at ILLINOIS INSTITUTE OF TECHNOLOGY

The Ideal Controller

Load and System Optimization

Campus Conservation Voltage Reduction

Simulated Network Operations Center for Advanced DER Planning and Operations

Inductive Load Optimization

- Passive resonance-free power factor correction to reduce the demand of reactive non-power currents;
- Harmonic filtering of non-power currents to reduce the billed kWh consumption;
- Transient energy conversion through the surge protections self-healing magnetic chokes – energy above and below the operational voltage of a facility is absorbed, re-constituted, and returned to the customer as usable power;
- Proprietary chokes generate a current from each phase that is injected into the adjacent phases as usable power, reducing magnetic fields.

Financial Approach

Utility Service Agreement Approach

- No capital investment by customer
- Off-balance sheet accounting treatment
- Lays off risk (construction, load, performance) to third parties
- No fixed payment or minimum take-or-pay provision: pay only for what is used

Financial Benefits:

- Estimated \$400K per year, or 4.6% reduction in energy cost
 - \$4.6M NPV savings over the term of services agreement
- No capital investment while benefitting from reduced utility costs
- Plant can continue to provide discounted utilities to the facility well beyond the end of service agreement

Real world Example 1:

Mid-sized 10 MVA University

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Real world Example 2:

Urban Re-development Microgrid

- 11-parcel microgrid
- ✓ 4.9 million square feet
- ✓ Loads
 - 35 MVA winter
 - 28 MVA summer
- Mixed use
 - Corporate Headquarters
 - High-rise residential
 - Commercial
 - Hotel
- Electric and thermal microgrid components

Project suspended: Local spark spread using natural gas as the generation fuel did not support the microgrid economic model.

Revisiting with Municipal Solid Waste as fuel via Waste to Energy.

Thank You

Stephen F. Schneider

Vice President and Chief Solutions Architect SAIC 3465 Box Hill Corporate Center Drive Abingdon MD 21009 Tel: 443-402-9263 | Email: Stephen.F.Schneider@saic.com

